

 1040, avenue Belvédère, suite 215

Québec (Québec) G1S 3G3 Canada
Tél.: (418) 686-0993 Fax: (418) 686-2043

SR2_Analog_810

User’s Manual

 by

 with the collaboration of

 January 6 2009

1 INTRODUCTION __ 5

2 TECHNICAL DATA __ 5

2.1 Analog Inputs__ 5

2.2 Analog Outputs __ 5

2.3 General-Purpose IOs__ 6

2.4 Counters __ 6

3 CONNECTOR PINOUTS __ 7
3.1.1 ADC Connector Pinouts __ 7
3.1.2 DAC Connector Pinouts __ 8
3.1.3 Auxiliary +-12 V Power Supplies ___ 8
3.1.4 GPIO and Counters Connector Pinout__ 9

4 INSTALLATION __ 10

4.1 Software Installation ___ 10

4.2 Development Resources __ 10

4.3 FPGA Configuration ___ 10

4.4 Mating to Signal_Ranger_mk2 ___ 10

5 FPGA LOGIC __ 11

5.1 Registers ___ 11

5.2 Control Register___ 11

5.3 ADC and DAC Operation___ 12
5.3.1 Period Register __ 12

5.4 Counter Operation __ 12
5.4.1 Pins and Functions__ 12
5.4.2 Counter Management__ 13

5.5 General-Purpose and Counter Inputs and Outputs __________________________________ 13
5.5.1 GPIO Registers __ 14

5.6 Reset and Sequencing __ 14
5.6.1 Sequencing ___ 14
5.6.2 Start Sequence ___ 14

5.7 Bus Switches__ 15

SR-Analog_810 - User’s Manual 3

6 SOFTWARE___ 15

6.1 SR2_SignalTracker_Analog810 Demo Application___________________________________ 15
6.1.1 Time Signal Tab ___ 16
6.1.2 Sxx Tab __ 16
6.1.3 Acquisition Set-Up Tab __ 17
6.1.4 Digital IOs Tab __ 19
6.1.5 Board/FPGA Info Tab ___ 20

6.2 AIC810 Driver and Example Code ___ 21
6.2.1 Overview ___ 21
6.2.2 FPGA Logic___ 21
6.2.3 User-Accessible Structures and Functions__ 21
6.2.4 Used Resources __ 23
6.2.5 Restrictions ___ 24
6.2.6 Driver Lock-Up __ 24

6.3 LabVIEW Library___ 25

SR-Analog_810 - User’s Manual 4

1 Introduction

SR2_Analog_810 is an analog conversion board for the Signal_Ranger_mk2 DSP board. It is
optimized for industrial control and instrumentation applications. It provides three functions:

• 8 analog inputs and 8 analog outputs.
• 16 individually configurable IOs, arranged as one 16-bit port
• 2 16-bit counters that can be used as simple pulse counters or Quadrature Encoder Pulse (QEP)

counters

Its analog I/O channels are capable of operating at up to 150 kHz with a +-10V dynamic range, a very
high DC stability, low noise and a very low input-output group-delay. To minimize the group-delay the
analog IOs do not have anti-aliasing filters. Therefore this board is not a good choice for vibro-acoustic
analysis and general-purpose signal acquisition applications. For these applications we recommend the
SR2_Analog_16 or SR2_Analog24Bits boards

Note: Signal_Ranger_mk2’s FPGA is used to manage the ADCs and DACs on SR2_Analog_810.
To be functional the FPGA must be loaded with a special logic that is different from the factory-default
logic implemented in Signal_Ranger_mk2. Any logic implemented in the FPGA of Signal_Ranger_mk2
at power-up that is not the logic designed to manage SR2_Analog_810, including the factory-default
logic, has the potential to damage the FPGA and the SR2_Analog_810 board. If SR2_Analog_810 has
been purchased separately from Signal_Ranger_mk2 we recommend to either load the
SR2_Analog_810 logic, or erase any logic in Flash prior to mating SR2_Analog_810 to
Signal_Ranger_mk2. The procedure is described in Signal_Ranger_mk2’s user manual.

2 Technical Data

2.1 Analog Inputs
• Number of inputs: 8
• Resolution: 16 bits
• Noise: 1 bit RMS = 150 μV RMS on +-5V range

 1 bit RMS = 300 μV RMS on +-10V range
• Sampling rate: 11.4 Hz to 150kHz
• Analog input bandwidth: 0 to 10 MHz (includes DC)
• Input type: Single Ended
• Dynamic ranges: +-5V, +-10V
• Input leakage: +-1 μA max
• Anti-aliasing filter: None
• Group-delay: 2 samples (includes all hardware and software FIFO delay)

2.2 Analog Outputs
• Number of outputs: 8
• Resolution: 16 bits
• Noise: 20MHz bandwidth: up to 55 mV pk-pk on FFFFH-

 0000H alternating code sequence.
 20 kHz bandwidth: <25 μV RMS

• Offset drift with temperature: +-2 ppm FSR / degC
• Gain drift with temperature: +-2 ppm FSR / degC
• Offset drift with time: +-13 ppm FSR / 500 hours
• Sampling rate: 11.4 Hz to 150kHz
• Analog output bandwidth: 0 to >80 kHz (includes DC)
• Output type: Single Ended

SR-Analog_810 - User’s Manual 5

• Dynamic range: +-10V
• Source/Sink ability: 4mA
• Anti-aliasing filter: None
• Group-delay: (includes all hardware and software FIFO delay)

• Out_0 and Out_1 2.5 samples
• Out_2 and Out_3 2.75 samples
• Out_4 and Out_5 3 samples
• Out_6 and Out_7 3.25 samples

2.3 General-Purpose IOs
• Number of IOs: 16
• Configurability: All IOs individually configurable as input or output.
• IO level: 3.3V CMOS (5V-tolerant inputs)

2.4 Counters
• Number of counters: 2
• Counter width 16-bits (can be increased to any width in software).
• Inputs: Two quadrature encoder inputs A and B, and a general-

 purpose Pulse input per counter.
• IO level: 3.3V CMOS (5V-tolerant inputs)
• Max count frequency: 50 MHz
• Min pulse width: 20 ns (to be reliably counted the high and low states on the

 counter inputs must be at least 20ns wide).
• Synchronism Both counters are sampled synchronously to the ADC

 samples.

SR-Analog_810 - User’s Manual 6

3 Connector Pinouts

3.1.1 ADC Connector Pinouts

Figure 1 : J1 – J2 connector pinouts

3.1.1.1 J1
No Function No Function

1 -12V 2 +12V

3 Gnd 4 ADC_11 (not managed)

5 Gnd 6 ADC_9 (not managed)

7 Gnd 8 ADC_7

9 Gnd 10 ADC_5

11 Gnd 12 ADC_3

13 Gnd 14 ADC_1

Table 1: Connector J1

3.1.1.2 J2
No Function No Function

1 -12V 2 +12V

3 Gnd 4 ADC_10 (not managed)

5 Gnd 6 ADC_8 (not managed)

7 Gnd 8 ADC_6

9 Gnd 10 ADC_4

11 Gnd 12 ADC_2

13 Gnd 14 ADC_0

Table 2: Connector J2

SR-Analog_810 - User’s Manual 7

3.1.2 DAC Connector Pinouts

Figure 2: J4 – J5 connector pinouts

3.1.2.1 J4
No Function No Function

1 -12V 2 +12V

3 Gnd 4 Gnd

5 Gnd 6 Gnd

7 Gnd 8 DAC_6

9 Gnd 10 DAC_4

11 Gnd 12 DAC_2

13 Gnd 14 DAC_0

Table 3: Connector J4

3.1.2.2 J5
No Function No Function

1 -12V 2 +12V

3 Gnd 4 Gnd

5 Gnd 6 Gnd

7 Gnd 8 DAC_7

9 Gnd 10 DAC_5

11 Gnd 12 DAC_3

13 Gnd 14 DAC_1

Table 4: Connector J5

3.1.3 Auxiliary +-12 V Power Supplies
The J1, J2, J3 and J4 connectors provide auxiliary +12 V and -12 V taps that can be used to power
external user circuitry. When using these taps the following precautions must be taken:

SR-Analog_810 - User’s Manual 8

• The total current drawn from all the +12 V taps must not be greater than 100 mA. The limit is not
100mA per tap, but 100 mA for all taps.

• The total current drawn from all the -12 V taps must not be greater than 100 mA. The limit is not
100mA per tap, but 100 mA for all taps.

• Drawing current from these taps increases the power-supply noise up to 13mV pk-pk for 100 mA.

3.1.4 GPIO and Counters Connector Pinout

Figure 3: J3 connector pinout

No Function No Function No Function

36 GPIO_0(0) 35 Gnd 34 GPIO_0(1)

33 GPIO_0(2) 32 Gnd 31 GPIO_0(3)

30 GPIO_0(4) 29 Gnd 28 GPIO_0(5)

27 GPIO_0(6) 26 Gnd 25 GPIO_0(7)

24 GPIO_0(8) 23 Gnd 22 GPIO_0(9)

21 GPIO_0(10) 20 Gnd 19 GPIO_0(11)

18 GPIO_0(12) 17 Gnd 16 GPIO_0(13)

15 GPIO_0(14) 14 Gnd 13 GPIO_0(15)

12 Pulse_0 11 Gnd 10 Pulse_1

9 QEP_A_0 8 Gnd 7 QEP_A_1

6 QEP_B_0 5 Gnd 4 QEP_B_1

3 NC 2 Gnd 1 Presence

Table 5: J3 connector pinout

SR-Analog_810 - User’s Manual 9

Note: The Presence pin must be grounded for the GPIO pins to be connected to the FPGA through
the bus switches. When experimenting directly on the connector a simple jumper to ground may be
used.

4 Installation

4.1 Software Installation
Unzip the SR2_Analog_810.zip file and run setup.exe. This installs the following:

• A directory SignalRanger_mk2 in C:\Program Files (if it did not exist already) containing
documentation, LabVIEW libraries, Test applications, DSP code examples…etc.

• Shortcuts to compiled test applications and documentation.

4.2 Development Resources
LabVIEW developers can find the following resources in the C:\Program Files\SignalRanger_mk2
directory:

• A directory DSPSupport_Code containing the following:
• SR2_Analog810Driver: Containing the DSP driver supporting the board
• IO_Shell_Analog810: Containing the DSP code for the self-test application
• ST_Analog810_DSP: Containing DSP code for the SignalTracker

application
• A library SR2_Analog810U.llb: Containing Low-Level support Vis for the board
• A library SR2_SignalTrackerAnalog810.llb: Containing Vis that support the Signal_Tracker

application.

4.3 FPGA Configuration
Signal_Ranger_mk2’s FPGA is used to manage the ADCs and DACs on SR2_Analog_810. To be
functional the FPGA must be loaded with a special logic SR2_Analog_810_V200.rbt that is different
from the factory-default logic implemented in Signal_Ranger_mk2.

The demo applications that are provided with the board load the FPGA dynamically. They do not need
any FPGA configuration to be loaded in Flash.

However any logic present in the FPGA of Signal_Ranger_mk2’s Flash will be implemented at power-
up. If it is different from the logic designed to manage SR2_Analog_810 (including the factory-default
logic) it has the potential to damage the FPGA and the SR2_Analog_810 board. If SR2_Analog_810
has been purchased separately from Signal_Ranger_mk2 we recommend to either remove any logic
from the Flash of Signal_Ranger_mk2, or load the SR2_Analog_810 logic in Flash prior to mating
SR2_Analog_810 to Signal_Ranger_mk2. Procedures for doing so are described in
Signal_Ranger_mk2 user’s manual.

4.4 Mating to Signal_Ranger_mk2
When SR2_Analog_810 is purchased with Signal_Ranger_mk2 the two boards are already mated. If
not SR2_Analog_810 must be mated to connector J4 of Signal_Ranger_mk2 prior to powering-up.
Before mating the two boards make sure that no FPGA logic other than SR2_Analog_810 is present in
the Flash of Signal_Ranger_mk2. Never attempt to mate the two boards while Signal_Ranger_mk2 is
powered.

SR-Analog_810 - User’s Manual 10

5 FPGA Logic

5.1 Registers
All the functions of the FPGA logic are configurable through a set of 7 registers. The registers and their
addresses are listed in table 1.

Register R/W DSP Byte-Address DSP Word-Address Function

Control R/W C00002H 600001H Main Control
Register

FIFO_Data R/W C00006H 600003H ADC and DAC
FIFO access

Period R/W C0000AH 600005H Sampling
Period Register

GPIO_0_Data R/W C0000EH 600007H 16-bit parallel
port 0

GPIO_0_Dir R/W C00012H 600009H Direction port 0
QEP_Count_0_FIFO R C00016H 60000BH 16-bit counter 0

FIFO
QEP_Count_1_FIFO R C0001AH 60000DH 16-bit counter 1

FIFO
Table 2: FPGA registers

5.2 Control Register

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name ADC_Range Run

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset
state

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Control register

Bit Function

Run Resetting this bit to 0 performs the following:

• All the FPGA logic is maintained in reset.
• All ADC and DAC operations are suspended.
• The RSTIN and CLR DAC signals, as well as the RESET ADC signals are

activated, maintaining both ADCs and DACs in reset.

When this bit is set the logic starts operating at the sampling frequency set by Period.

SR-Analog_810 - User’s Manual 11

ADC_Range This bit defines the state of the RANGE signal of the ADC. The range adjustment is as
follows:

• 1 +-5V
• 0 +-10V

Table 4: Control bits

5.3 ADC and DAC Operation
The FIFO_Data register accesses both the ADC and DAC FIFOs. To fill the DAC FIFO simply write
words in succession to the FIFO’s address. To read the ADC FIFO simply read words in succession
from the same address. Both FIFOs have a depth of 16 words. This is twice the number of samples
required for one sampling period.

After reset the DAC FIFO is empty. This way the first words sent by the DSP as soon as the first INT0
interrupt is triggered are immediately output to the DACs. This minimizes the group delay of the output
chain.

After reset the ADC FIFO contains 8 words at 0. These words must be read by the DSP as soon as the
INT0 interrupt is triggered. These words represent ADC samples read in the previous sampling period.
The first time around there has not been an ADC sampling yet. This is why the ADC FIFO contains 8
samples at zero. At the next INT0, the ADC FIFO contains the 8 words sampled during the first period
(see section Reset and Sequencing).

5.3.1 Period Register
The Period register adjusts the sampling frequency. The sampling frequency is calculated as:

200
_

×
=

N
InClkFS where N is the content of Period.

The sampling frequency cannot be higher than 150 kHz, which corresponds to a Period value of 5. Any
value between 0 and 5 is forced at 5.

The Period register should not be changed while the logic is operating. The proper procedure to
change the value is:

• Write 0 to the Run bit of the Control register to stop and reset the FPGA logic.
• Write the new value to the Period register.
• Write 1 to the Run bit of the Control register to start the FPGA logic.

5.4 Counter Operation
5.4.1 Pins and Functions
Each counter has three pins available on the J3 connector:

• Pulse
• QEP_A
• QEP_B

The Pulse function and the QEP function are exclusive. The counter can be used as a pulse counter, or
as a QEP counter but not both. The presence of transitions on both sets of pins gives unexpected
results.

SR-Analog_810 - User’s Manual 12

All pins are maintained by keepers. An unused pin can be grounded, or can be left unconnected.

5.4.1.1 Pulse Function
When the counter is used to count pulses the QEP_A and QEP_B inputs should be grounded or left
unconnected.

The pulse source is connected to the Pulse input. The counter counts rising transitions. The counter
can count as many as 50.106 transitions per second. The signal must be stable at 0 or 1 for at least
20ns for the transitions to be reliably counted.

5.4.1.2 QEP Function
When the counter is used to count quadrature encoder transitions the A and B channels of the encoder
must be connected to the QEP_A and QEP_B inputs The Pulse input should be grounded or left
unconnected.

The counter counts every transition on both channels (x4 decoding). The counter can count as many
as 50.106 transitions per second. The signal on both channels must be stable at 0 or 1 for at least 20ns
for the transitions to be reliably counted.

5.4.2 Counter Management
The counter contents are sampled precisely at the same time as the ADCs and filed into their
respective FIFOs. This means that the counter contents are perfectly synchronous to, and have the
same latency as the ADC samples.

5.4.2.1 Software Counter Width Extension
The counters are only 16-bit wide, but they can easily be extended to 32 or more bits by software by
the following processing:

1. Read the counter FIFO. This represents the contents of the counter as it was sampled during the
previous sampling period.

2. Subtract the current reading from the reading at the previous sampling period. Use a subtraction
operator that operates on 16-bit two’s complement signed numbers without saturating the result
(allowing roll-over). The result represents precisely the pulses or transitions that have been counted
during the previous sampling period. The timing is extremely precise and unaffected by any
software latency because the counter contents are sampled at a precise instant in every sampling
period.

3. Add the 16-bit signed result from step two to a larger (32-bit or more) counter.

Note: To be exact the sampling rate must be high enough, relative to the maximum pulse rate so that
the counter cannot count more than 65536 counts in a single sampling period.

5.4.2.2 Software Gating
To gate the counters in software, modify step 3 above to optionally not add the result of step 2 to the
software counter, depending on the state of a gating variable (true or false).

Because the counters are sampled at a precise instant in every period the resulting software gating
window length is a very precise multiple of the number of periods. The precision of the window length is
unaffected by any software latency.

5.5 General-Purpose and Counter Inputs and Outputs
The board provides 16 general-purpose input-output pins (GPIOs). These pins are accessible on the J3
connector. Each pin can be individually configured as input or output via a direction register.

SR-Analog_810 - User’s Manual 13

5.5.1 GPIO Registers
The direction register GPIO_Dir_0 contains bits that configure each pin as input (0) or output (1).

Reading the data register GPIO_Data_0 returns the state of the corresponding port pins, irrespective of
its configuration (input or output).

Writing the data register GPIO_Data_0 sets the state of the port pins that are configured as outputs. It
has no impact on the port pins that are configured as inputs.

An open drain function can be emulated by writing 0 to the specified bit position of GPIO_Data_0 and
controlling the specified bit position of GPIO_Dir_0.

The register contents are as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6: GPIO_Data_0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7: GPIO_Dir_0

5.6 Reset and Sequencing
Note: The following description assumes the maximum 150 kHz sampling frequency (Period = 5).
When the sampling frequency is lower all the timings are lengthened accordingly.

5.6.1 Sequencing
The INT0 interrupt signals the beginning of the sampling period. In response to INT0 the DSP must
take the following actions:

1. Write 8 words to the DAC FIFO. To avoid a FIFO under-run the DSP has 3 μs initially (@ Fs = 150
kHz) to write the first two words, then 1.6 μs to write each remaining pair of words. This delay
leaves enough margin for the FIFO write sequence to be delayed by individual reads and writes via
the EMIF, or by a kernel exchange in DARAM of one complete block (256 words).

2. The DSP must then read 8 words from the ADC FIFO. The DSP has up to the next INT0 to read
the ADC FIFO to avoid a FIFO overrun. The words read from the ADC FIFO have been sampled in
the previous sampling period (between the previous INT0 and the present one).

3. The DSP must then read two words from the QEP counter FIFOs. The DSP has up to the next
INT0 to read the counter FIFOs to avoid a FIFO overrun. The words read from the counter FIFOs
have been sampled in the previous sampling period (between the previous INT0 and the present
one).

5.6.2 Start Sequence
The recommended reset and start sequence is as follows:

1. Write to the Control register to reset the Run bit.
2. Write to the Period register to set the desired sampling frequency.

SR-Analog_810 - User’s Manual 14

3. If required, prepare the DMAs to read and write the ADC, DAC and counter FIFOs in response to
the INT0 interrupt.

4. Write to the Control register to set the Run bit and start the sequence.

The first INT0 interrupt is triggered 80 ns (@ Fs = 150 kHz) after initiating the last write to the Control
register, which deactivates the reset. Since the write itself takes more than 80 ns, this means that the
first INT0 is triggered immediately after the write.

5.7 Bus Switches
The GPIO and QEP pins are connected to the corresponding FPGA pins on Signal_Ranger_mk2
through bus switches.

A Presence input is provided on J3 pin 1. This input is used to activate the bus switches that otherwise
isolate all the signals of J3 from the Signal_Ranger_mk2 board.

The bus switches provide two functions:

• They isolate Signal_Ranger_mk2 from a user board connected on J3 when one board is powered
but not the other. This is essential because in the absence of the switches, drivers on one board
could be driving un-powered input stages on the other, which could damage them.

• They provide level translation between the user-board, which can drive levels up to 5V and inputs
on Signal_Ranger_mk2, which are not 5V-tolerant. In short, the switches make the inputs 5V-
tolerant.

To provide the first function, the switches should only be activated (placed in low-impedance) when the
user daughter board is powered. The Presence input serves this purpose. This input is normally pulled-
up by a 10 kΩ resistor on SR2_Analog_810, which keeps the switches open. The Presence pin should
be pulled low by an open-drain driver on the user’s daughter board, closing the switches, when the
daughter board is properly powered. Pulling Presence low when the user’s daughter board is not
properly powered (before it is powered or after it is un-powered) exposes input stages on the user’s
board to damage inflicted by FPGA pins that may be configured as outputs. Depending on how the
FPGA is configured at the time it may not be a problem. For instance if the FPGA is not configured, its
IOs are floating and will not drive any current. In this case, Presence may be permanently tied to
ground. Pulling Presence low when the user’s daughter board is properly powered but
Signal_Ranger_mk2 is not DOES NOT EXPOSE the FPGA inputs to damage that may be inflicted by
drivers on the user’s daughter board. This is because the switches are open whenever
Signal_Ranger_mk2 is un-powered.

The level-translation function is provided automatically whenever the switches are activated (whenever
Presence is low).

6 Software

6.1 SR2_SignalTracker_Analog810 Demo Application
The SR2_SignalTracker_Analog810 application has been designed to allow the test and evaluation of
the analog and digital input/output channels of the SR2_Analog_810 board. The application allows the
user to send test signals to a selected output, and monitor the sampled signal on a selected input.
Analog inputs are displayed both in terms of time signals, as well as instantaneous or averaged energy
spectra. Averaged energy spectra are useful to assess the input noise. The front-panel of the
application is divided into several tabs, one for each functional group.

SR-Analog_810 - User’s Manual 15

Figure 4: SR2_SignalTracker_Analog810 - Time Signal Tab

To start the application, simply click on the white arrow at the top-left of the window.

The application sends blocks of samples of the specified length and waveform to the selected output,
and records blocks of samples of the same length on the selected input. The recorded input samples
are synchronous to the output samples, with a fixed and known time relationship between input and
output.

6.1.1 Time Signal Tab
Time Indicator

The Time-Signal tab presents a time plot of the signal sampled on the selected input. The amplitude
scale takes into account the range of the ADC, so that the signal amplitude is represented in Volts at
the connector.

AC estimate (Vrms) Indicator

This indicator presents the RMS value of the input signal (any DC offset is removed before the RMS
calculation).

DC (V) Indicator

This indicator presents the average DC value of the recorded time signal.

6.1.2 Sxx Tab

Spectrum Indicator

SR-Analog_810 - User’s Manual 16

The Spectrum indicator presents the instantaneous or averaged power spectrum of the input sampled
block.

Figure 5: SR2_SignalTracker_Analog810 - Sxx Tab

Average Control

To average the power-spectrum, simply place the Average control in the ON position.

Reset Average Button

The Reset Average button resets the average.

Time Window selector

An optional weighting window can be chosen from the Time-Window list.

Graph and Zoom Controls

Graph controls can be used to change the zoom factor. By default the plot is auto-scaled in X and Y,
which is indicated by the closed locks beside each scale name. To disable auto-scale, simply press the
lock button.

6.1.3 Acquisition Set-Up Tab
The Acquisition Set-Up tab presents the various controls for the acquisition set-up.

SR-Analog_810 - User’s Manual 17

Figure 6: SR2_SignalTracker_Analog810 - Acquisition Tab

Signal Output Control

The Signal Output control selects a type of waveform from a list of predefined waveforms. The No
Output selection sends null samples to the output.

Block Size Control

The Block Size control sets the number of samples that are sent to the output, and synchronously
recorded from the input.

Amplitude Control

The Amplitude control adjusts the amplitude of the output waveform. Note that the output dynamic
range is ±10V.

Frequency Control

The Frequency control is only used for periodic waveforms. It adjusts the fundamental frequency of the
waveform.

Input Codec Control

The Input Codec control selects the input channel between 0 and 7.

Output Codec Control

The Output Codec selects the output channel between 0 and 7.

Offset Compensation Control

SR-Analog_810 - User’s Manual 18

The Offset Compensation button performs an input offset compensation. This procedure reads a block
of input samples from the selected input channel while sending zero samples to the selected output
channel. The average of the input sample block is then subtracted from any further input samples.
Therefore, if any offset is present on the selected input, it is subtracted in all subsequent acquisitions.
The average is displayed in the Offset(I16) indicator. This indicator is scaled in bits. The input offset
compensation is done entirely in software.

Offset(I16) Control

The Offset(I16) indicator can also act as a control. Simply changing the content of this field forces a
software offset to be applied to the recorded input samples.

Sampling Frequency Control

This control allows selecting the sampling frequency of the SR2_Analog_810 board. The list offers a
limited number of selections (from 150 kHz to 25 kHz). It means that the N content of the Period
register is limited between 5 and 30. With a simple software modification of the
SR2_SignalTracker_Analog810, application the N value can be set higher than 30 (maximum 65536)
to select lower sampling frequencies.

ADC Range Control

This is the input range selection. Two selections are possible ±5V or ±10V.

6.1.4 Digital IOs Tab
The Digital IOs tab allows the user to read or to write the digital I/Os.

Direction Control

The Direction control selects the direction of the general-purpose I/Os (green for the read direction and
red for the write direction).

State Control/Indicator

The State control acts as an indicator for all general-purpose I/Os in read direction and as a control for
all I/Os in write direction. The levels of the State controls are:

 : I/O at 1 (3.3 V)

 : I/O at 0 (0 V)

QEP_i

The QEP_0 and QEP_1 indicators display the contents of the 32-bit QEP/Pulse counters. The counters
are augmented to 32-bits through software.

SR-Analog_810 - User’s Manual 19

Figure 7: SR2_SignalTracker_Analog810 – GPIOsTab

6.1.5 Board/FPGA Info Tab
This tab presents information about the Signal_Ranger_mk2 hardware revision, Driver ID number, and
FPGA configuration file.

SR-Analog_810 - User’s Manual 20

Figure 8: SR2_SignalTracker_Analog810 – Board/FPGA infos Tab

6.2 AIC810 Driver and Example Code
6.2.1 Overview
A driver for the analog I/Os (Analog Interface Circuit) is provided, together with the DSP code of a
demo application that uses this driver, as well as an empty “shell” project. Source code for the AIC
driver resides in the folder AIC810Driver. Source code for the demo application resides in the folder
ST_Analog810_DSP. This folder contains the DSP code of the SR2_SignalTracker_Analog810 demo
application discussed above. Source code for the shell project resides in the IO_Shell_Analog810
folder. The shell project constitutes an excellent starting point for developing DSP code that uses the
AICs.

The driver has been optimized in assembly language, but can be used in either C, or assembly
language. It takes the form of a DSP object libraries sr2_analog810driver.lib. The driver contains C-
callable functions to configure and use the AICs. A function called dataprocess is provided in C, where
developers can conveniently place their own analog I/O processing code.

The driver uses the DMA to communicate with the AICs for maximum efficiency.

6.2.2 FPGA Logic
Operation of the driver assumes that the SR2_Analog_810_V200.rbt logic is loaded into the FPGA and
functional. The entire logic of the module is clocked by a 150 MHz Clk_In signal provided by the DSP
(CLKOUT). CLKOUT is provided by the DSP by default at the correct frequency. This signal must not
be disabled by DSP user code.

6.2.3 User-Accessible Structures and Functions
The sr2_analog810driver.lib library defines and allocates the following user-accessible structures and
variables:

FreqDiv

SR-Analog_810 - User’s Manual 21

This unsigned short variable (16-bits) determines the sampling frequency selection. This value,
between 5 and 65536, is written to the Period register of the FPGA logic. The maximum sampling
frequency selection is 150 kHz (N=5) and the minimum sampling frequency is 11.44 Hz (N=65535).
See the section Hardware – Period Register for more details.

ADCRange

This unsigned short variable (16-bits) selects the input range. The value 0 selects the ±10V range while
the value 1 selects the ±5V. All others values are not allowed.

QEP_ON

This unsigned short variable (16-bits) indicates if the QEP counters are managed or not. Not managing
the QEP counters eases the timing constraints. In particular there are two fewer FPGA reads, which
can help in situations where the DSP must perform external (EMIF) accesses other than those done by
the driver (see section Restrictions below).

• QEP_ON = 0x0001 QEP counters are managed
• QEP_ON = 0x0000 QEP counters are not managed

QEP_cnt[2]

This signed short array (16-bits) contains the contents of the two QEP counters as they are sampled by
the FPGA. The contents of this array are always synchronous to the contents of the iobuf.min array.

iobuf

This structure is designed to contain the input and output samples to/from the AICs.

The user DSP code has one complete sampling period to execute the dataprocess function. If the
function is not completed within a sampling period input samples are overwritten by the new samples,
and the previous output samples are sent to the AICs.

The structure is defined in the Analog810Driver.h header file.

The structure is defined as follows:

struct iobuf_rec {
int min[8];
int mout[8] ;
};

The structure is reserved by the driver library as follows:

struct iobuf_rec iobuf;

Note: The structure is reserved automatically as a consequence of including the driver library with the
user DSP code. There is no need for the user DSP code to reserve this structure.

Note: All symbols must have an “_” prefix when used from assembly code. For instance iobuf becomes
_iobuf in assembly.

start_Analog810

SR-Analog_810 - User’s Manual 22

This function configures the AICs and starts the AIC conversion process. It has no arguments. It uses
the configuration values found in the FreqDiv, ADCRange and QEP_ON variables and configures the
AICs accordingly through the FPGA configuration registers. These variables must be initialized prior to
calling start_Analog810. After the execution of this function, the user-defined processing function called
dataprocess starts being triggered at each sampling period. The LabVIEW AIC interface library
includes a VI to generate the configuration variables FreqDiv and ADCRange automatically as a
function of user-selected AIC set-up.

The function is defined in the Analog810Driver.h header file.

Note: All symbols must have an “_” prefix when used from assembly code. start_Analog810 must be
written _start_Analog810 in assembly.

stop_Analog810

This function stops the AIC conversion process. After the execution of this function, the user-defined
dataprocess function stops being triggered.

The function is defined in the Analog810Driver.h header file.

Note: All symbols must have an “_” prefix when used from assembly code. stop_Analog810 must be
written _stop_Analog810 in assembly.

dataprocess

This function is declared by the AIC driver library, but must be provided by the user. It usually contains
the DSP code that reads the input samples from the iobuf structure and optionally the QEP counters,
performs the signal processing between the inputs and outputs and writes the output samples to the
iobuf structure. Note that the dataprocess function is actually a TRAP.

In assembly, this function must protect all registers that it uses, and must be terminated by a RETI
instruction. The dataprocess symbol must be declared using the .global directive.

In C, this function must be defined with the interrupt keyword.

Just before the entry into dataprocess, the AIC driver enables the global interrupt mask (INTM) and the
local masks INT0 and DMAC1. All other interrupts are disabled because of the time-critical nature of
this function. The INT0 and DMAC1 interrupts must remain active during the execution of dataprocess
for the driver to be functional. The local mask registers are saved on the stack and restored after the
execution of dataprocess. If the user needs to unmask another interrupt within dataprocess they must
be mindful of timing issues. The processing of dataprocess must be able to complete within one
sampling period. Also all the interrupt masks are restored to their state prior to the execution of
dataprocess at the function’s exit. Therefore any interrupt enabled in dataprocess that was not enabled
before will be disabled at exit.

Note: All symbols must have an “_” prefix when used from assembly code. dataprocess must be written
_dataprocess in assembly.

6.2.4 Used Resources
The AIC driver uses the following hardware resources:

• DMA channels 0 to 1 are used by the driver.
• The DMAC0 and DMAC1 interrupts are used by the driver.
• TRAP #30 is used by the driver to launch the dataprocess user function.

SR-Analog_810 - User’s Manual 23

• The external INT0 interrupt is used by the FPGA to start the DMA channel 0 and the write
operations in the DAC FIFO.

• The driver uses 307 bytes of code and 18 words of data.

6.2.5 Restrictions
When developing C or assembly code using the AIC driver, the following restrictions apply:

• The user-defined I/O processing function dataprocess must be present in the user code. If the
function is defined in C, it must be defined with the interrupt specifier. This way, the compiler does
a full context save when entering the function. If it is defined in assembly, all DSP registers used
within the function must be protected upon entry, and restored upon return. It must end with the
RETI instruction. The dataprocess symbol must be defined using the .global directive.

• All C-accessible symbols and labels defined in the sr2_analog810driver.lib library must have a “_”
prefix when used in assembly language.

• The entire code and data sections (including .bss section) of the sr2_analog810driver.lib library
must be linked into the internal DARAM memory.

• The software interrupt #30, the DMAC0, the DMAC1 and the external INT0 interrupts are used by
the AIC driver. The vectors for these interrupts must be properly declared. See the
ST_Analog810_DSP or the IO_Shell_Analog810 DSP code projects for an example of a correct
example of vectors.asm.

• DMA accesses to the FPGA must never be blocked for more than 2.3μs per sampling period,
otherwise the driver will fail. The most obvious symptom is a shift of the ADC and DAC channel
numbers. The DSP-FPGA interface is through the EMIF, which is also used to interface the DSP
to the SDRAM and Flash. Therefore accesses to SDRAM, Flash and the FPGA can all contribute
to slowing-down the DMA accesses. The following operations can compromise the operation of
the driver.

• More than 9 reads per sampling period from SDRAM, Flash or the FPGA if QEP
counters are not managed (7 reads if QEP counters are managed).

• More than 16 writes per sampling period to SDRAM or the FPGA if QEP counters
are not managed (12 writes if QEP counters are managed).

• Blocking interrupts for more than 2.35μs per sampling period.
• Any combination of the above operations that adds-up to more than 2.35μs.

6.2.6 Driver Lock-Up
Because the driver relies on the DMA for writing and reading in the ADC and DAC FIFOs, there are
situations that can lead to a lock-up. The DARAM can only support 2 accesses per DSP cycle, for
which the CPU always has priority against DMA and HPI accesses. Some rare sequences of
instructions, when executed in a tight loop require those two DARAM accesses per cycle, thereby
completely denying access to the DMA. This condition occurs only when the code is executing from the
same DARAM block where the DMA buffer resides. Under these conditions the DMA transfers never
complete. Therefore the interrupt #30 is never triggered and the dataprocess user function is never
called. This situation may be accompanied by a USB lock-up if the code executes from the first
DARAM block, because the HPI uses the DMA for transfers and is subject to the same priority rules
(see Signal_Ranger_mk2_UserManual.pdf).

There are several workarounds that can be applied:

• The DMA section (named dmabuf in the AIC driver) may be moved to a DARAM block other from
the block containing the offending code loop.

• The offending code loop may be modified to avoid requiring two accesses per cycle. A simple fix is
usually to insert NOP instructions in the loop. The situation is very rare so most code
reorganizations will usually fix the problem.

SR-Analog_810 - User’s Manual 24

SR-Analog_810 - User’s Manual 25

6.3 LabVIEW Library
A LabVIEW library is provided to manage the AICs. This library contains only one function, used to
determine the contents of the AIC registers.

SR2_GenerateRegistersForAnalog810.vi

This VI determines the values the AIC driver configuration variables. The AIC register contents are
determined according to two controls: Sampling Frequency(Hz) and Range. The Master Clock input
must be set to 150 MHz at all times.

Controls:

• Sampling Frequency(Hz): This control selects the desired sampling frequency in Hz. The VI
finds the closest available sampling frequency and returns the sampling frequency found in the
Fs(Hz) indicator. The maximum sampling frequency is 150 kHz and the minimum is 11.44 Hz.

• Master Clock (Hz): This control must be set to 150 MHz at all times.
• Range: This control selects the ADC input range. The menu ring control allows the ±5V and ±10V

input range selection.
• QEP_On: This controls selects whether or not the QEP counters are monitored. Not

monitoring the counters eases the timing constraints on the EMIF exchanges. It may help in
situations where the user code needs to perform many accesses through the EMIF that are not
related to the operation of the driver.

Indicators:

• FreqDivANDADCRange: This vector contains the AIC driver configuration variables FreqDiv and
ADCRange. This vector must be loaded in DSP memory at the symbol address _FreqDiv before
launching the _start_Analog810 function of the AIC driver.

• FS(Hz): This indicator contains the actual sampling frequency, which is the closest to the
requested sampling frequency.

	1 Introduction
	2 Technical Data
	2.1 Analog Inputs
	2.2 Analog Outputs
	2.3 General-Purpose IOs
	2.4 Counters

	3 Connector Pinouts
	3.1.1 ADC Connector Pinouts
	3.1.1.1 J1
	3.1.1.2 J2
	3.1.2 DAC Connector Pinouts
	3.1.2.1 J4
	3.1.2.2 J5

	3.1.3 Auxiliary +-12 V Power Supplies
	3.1.4 GPIO and Counters Connector Pinout

	4 Installation
	4.1 Software Installation
	4.2 Development Resources
	4.3 FPGA Configuration
	4.4 Mating to Signal_Ranger_mk2

	5 FPGA Logic
	5.1 Registers
	5.2 Control Register
	5.3 ADC and DAC Operation
	5.3.1 Period Register

	5.4 Counter Operation
	5.4.1 Pins and Functions
	5.4.1.1 Pulse Function
	5.4.1.2 QEP Function

	5.4.2 Counter Management
	5.4.2.1 Software Counter Width Extension
	5.4.2.2 Software Gating

	5.5 General-Purpose and Counter Inputs and Outputs
	5.5.1 GPIO Registers

	5.6 Reset and Sequencing
	5.6.1 Sequencing
	5.6.2 Start Sequence

	5.7 Bus Switches

	6 Software
	6.1 SR2_SignalTracker_Analog810 Demo Application
	6.1.1 Time Signal Tab
	6.1.2 Sxx Tab
	6.1.3 Acquisition Set-Up Tab
	6.1.4 Digital IOs Tab
	6.1.5 Board/FPGA Info Tab

	6.2 AIC810 Driver and Example Code
	6.2.1 Overview
	6.2.2 FPGA Logic
	6.2.3 User-Accessible Structures and Functions
	6.2.4 Used Resources
	6.2.5 Restrictions
	6.2.6 Driver Lock-Up

	6.3 LabVIEW Library

