
The Signal Ranger Linux Documentation
Project

by Percy Zahl

May 7, 2008

Contents

1 Front Matter 5
1.1 Abstract . 6

I Signal Ranger and Linux 7

2 The Signal Ranger USB Linux kernel module 9
2.1 Installation . 9

2.1.1 Quick-start – Linux 2.4.x . 9
2.1.2 Quick-start – Linux 2.6.x . 10
2.1.3 Signal Ranger-STD firmware loader setup 11
2.1.4 Troubleshooting . 12

2.2 Module description . 13

3 Example user program 19
3.1 C program . 19
3.2 Python program . 23

II Utilities 25

4 The Signal Ranger Linux DSP COFF loader and memory debugger 27
4.1 Description . 27
4.2 Memory debugger mode . 28

4.2.1 Debugger command line interface . 28
4.3 Loading and starting a DSP program . 31
4.4 Load, start and watch . 32
4.5 Release Notes . 33

III Appendix 35

A Example module messages 37

3

Contents

B Signal Ranger and Gxsm 39
B.1 Startup . 39

C Terms and conditions 41

About this project 47

D Comments and Questions 49

4

1 Front Matter

Signal Ranger Linux Project:
drivers, utilities, demos and documentation
Copyright (C) 2003 Percy Zahl
Email: zahl@users.sourceforge.net

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, USA.

See the end of this document for complete license: C

5

1 Front Matter

1.1 Abstract

The Signal Ranger1 project is focusing on the development of an open source software environ-
ment to use the Signal Ranger DSP board (manufactured by Soft dB) with Linux and it provides
a growing set of open source DSP software projects related to the Signal Ranger DSP board.

• Supported boards: Signal Ranger-SP2 and Signal Ranger-STD (needs the specialilized
firmware loader to work)

• Generic Signal Ranger Hardware support for Linux: USB driver module ”usb-sranger”,
tested on i386 and PPC platforms with the 2.4.x Linux kernel

• First stage (renumeration) firmwareloader for Signal Ranger-STD is suppied as static bi-
nary for i386 and PPC via SF-filearea (support for other platforms is possible, please ask
the author!)

• Tools: COFF2 loader and DSP memory debugging and watch tool

• DSP applications:

– SPM DSP software, used by Gxsm
– Linux controls SRanger: Sound field processing demo
– THX: Dolby (digital) “Pro-Logic” like Surround Decoder DSP software project
– and more . . .

This documentation expects the user to be familiar with the Signal Ranger DSP board itself
– the Signal Ranger comes with a documentation covering that part (Soft dB). But it covers
how to install and use the provided Linux tools and describes the features of the Linux – DSP
interface. It also expects the user to be a little familiar with UNIX/Linux device mechanism. But
it contains simple examples (written in C and Python) showing how to write and read data from
and to the DSP via the /dev/sranger0.

1The Project can be found in the Internet at http://sranger.sf.net

6

http://sranger.sf.net
http://www.softdb.com
http://sourceforge.net/project/showfiles.php?group_id=70065&release_id=183498
http://gxsm.sf.net
http://www.softdb.com
http://sranger.sf.net

Part I

Signal Ranger and Linux

7

2 The Signal Ranger USB Linux kernel
module

To support the Signal Ranger DSP board by Linux a kernel module was written. It is based on
the “usb-skeleton driver 0.7”, which is included in the Linux 2.4.x kernel tree. This is a very
good starting point for writing new USB device drivers. Here are some USB related WWW
sites:

http://www.linux-usb.org
http://libusb.sourceforge.net/doc/index.html
http://www.beyondlogic.org/usbnutshell/usb4.htm
http://linux-hotplug.sourceforge.net/

The Signal Ranger-SP2 is supported natively. Support of the Signal Ranger-STD is now avail- ��
able, the extra firmware loader is needed, see chapter 2.1.3. After firmware load/renumeration
it is detected by the unified module as described here.

2.1 Installation

2.1.1 Quick-start – Linux 2.4.x

To build the Signal Ranger1 module follow this guidelines:

• have a installed and configured Linux kernel 2.4.x in /usr/src/linux

• get the SRanger module from CVS

• change into the directory SRanger and run “./autogen”

• change into the directory SRanger/modules and run “make”

• run “make install” as root to create /dev/sranger0..3 or execute manually:
“mknod -m 666 /dev/sranger0 c 180 200”,
“mknod -m 666 /dev/sranger1 c 180 201”,

1I assume a Signal Ranger -SP2 or -STD board with Vendor/Product: 0xa59/0x103 (SP2), 0xa59/x0101 (STD),
if your board is found (not accepted) with 0xa59/0x100 (STD, not renumerated) the firmware has not yet been
downloaded! See 2.1.3.

9

http://www.linux-usb.org
http://libusb.sourceforge.net/doc/index.html
http://www.beyondlogic.org/usbnutshell/usb4.htm
http://linux-hotplug.sourceforge.net/

2 The Signal Ranger USB Linux kernel module

. . . 2

“mknod -m 666 /dev/sranger15 c 180 215”

• change into the directory SRanger/loadusb and run “make”

To load the module run “insmod usb-sranger.o” as root.

2.1.2 Quick-start – Linux 2.6.x

Assuming any Linux 2.6.x system with propper Linux kernel headers and gcc development tools
installed. Have a look at the kernel module make and install instructions in SRanger/modules-2.6.x/INSTALL
for details.

To build the moduleSignal Ranger3 you need to run this from command line, replace the
kernel source paths below to match your version! And make sure you are using the same gcc
(i.e. gcc-4.0, or such) as used for kernel compilation! Where “sudo” is put in front of the
commands below yo need root permissions or your password if you are granted sudo rights.

• get the SRanger module from CVS

• change into the directory SRanger and run “./autogen” and “make”

• change into the directory SRanger/modules-2.6.x

• To build it: “make -C /usr/src/linux-2.6.12 SUBDIRS=$PWD modules”

• To install it: “make -C /usr/src/linux-2.6.12 SUBDIRS=$PWD modules install”

• To load it: “sudo insmod usb-sranger.ko”

• From this point you are ready. Plug in the SR-SP2, or -STD (this one needs the firmware
loaded before proceeding, see next chapter)

• To fix/adjust permissions: “sudo chmod a+rw /dev/sranger0”

For some reason on some systems you may need to fix permission after loading, the device will��
occurr automatically after insmod! Also check kernel messages ”dmesg” and list you usb bus
(“lsusb -v”) in case of troubles.

2create as many device file system nodes (up to 16) as you need.
3I assume a Signal Ranger -SP2 or -STD board with Vendor/Product: 0xa59/0x103 (SP2), 0xa59/x0101 (STD),

if your board is found (not accepted) with 0xa59/0x100 (STD, not renumerated) the firmware has not yet been
downloaded! See 2.1.3.

10

2.1 Installation

2.1.3 Signal Ranger-STD firmware loader setup

A little background first, the Signal Ranger-STD needs a “first-stage” firmware (of the USB
controller on the SR board) download to get alive and then it “renumerates” itself on the USB
bus and finally responds as Vendor/Product: 0xa59/x0101 (STD, firmware loaded). Only in this
state it is detected by the Linux driver described here.

To get the firmware on the board please download the fxload-sr-xxx binary for your
platform (xxx=”i386” or “ppc”) from here: SF-filearea (support for other platforms is possible,
please ask the author!) The binaries are zipped using bzip2 (.bz2 extension), use bunzip2 to
unpack!

This program is compatible to the standard Linux tool called fxload, except it incorporates
the Signal Ranger firmware in binary form4 and you are allowed to use it as it is.

This version of fxload-sr-xxx is compatible to the Linux fxload, but it knows the Signal
Ranger-STD firmware if it is called like:
fxload-sr-xxx -I SRangerFx
Command line options of fxload (fxload-sr-xxx --help) are:

usage: ./fxload [-vV] [-t type] [-D devpath]
[-I firmware_hexfile | ’SRangerFx’]
[-s loader] [-c config_byte]
[-L link] [-m mode]

... [-D devpath] overrides DEVICE= in env

... device types: one of an21, fx, fx2

... at least one of -I, -L, -m is required

The firmware can be loaded manually like
fxload-sr-xxx -I SRangerFx -D /proc/bus/usb/002/003,
but please figure out the correct device path in your case instead of “/proc/bus/usb/002/003” and
use the appropriate fxload-sr-ppc or fxload-sr-i386.

Unpack (bunzip2) it and place it into /usr/local/sbin or /usr/local/bin. Also
make sure it is execuatble.

For automating this procedure after plugging in the USB cable of the Signal Ranger-STD the
Linux hotplug mechanism can be used, here is how to set it up. I’m sorry, but it’s to be done
manually. So first make sure you have the hotplug stuff installed and working.

For 2.4.x systems:

Second, get the script getdevpath from here: SF filearea, get getdevpath.bz2

4The firmware contained herein is Copyright (C) 2003 by B.Paillard and SoftdB, http://www.softdb.com/ as an
unpublished work. This notice does not imply unrestricted or public access to the source code from which this
firmware image is derived. Except as noted below this firmware image may not be reproduced, used, sold or
transferred to any third party without SoftDb’s prior written consent. All Rights Reserved.

11

http://sourceforge.net/project/showfiles.php?group_id=70065&release_id=183498
http://sourceforge.net/project/showfiles.php?group_id=70065

2 The Signal Ranger USB Linux kernel module

For 2.6.x systems:

Use the script SRanger/scripte/fxfirm.sh to do the firmware load. Make sure the
fxload-386 is in you path, i.e. put it in /usr/local/sbin, make sure it is executable.

The fxfirm.sh script locates the current usb bus path and runs the fxload-sr-i386.
This is what is does, the grep/awk/. . . construct figures out the bus parameters, i.e. where is it

currently plugged into:

#!/bin/sh
fxload-sr-i386 -I SRangerFx -D /proc/bus/usb/‘cat /proc/bus/usb/devices

| grep "T:\|P:"
| grep -B1 0a59 | tac | tail -n1 | awk -F "=" ’{print $2 $7}’
| awk ’{ printf "%03d/%03d",$1,$3 }’‘

If /proc/bus/usb/... dose not exist, the usbdevfs may be at /dev/bus/usb/...,��
please verify and adapt if needed.

For debian 2.4.x and some newer systems

Then create the following script (or use the fxfirm.sh script from above (rename it!), sorry,
this depens on your distribution and used hot-plug subsystem, etc.).

/etc/hotplug/usb/sranger script:

#!/bin/sh
sranger_script: do not forget to replace the
-xxx below by -ppc or -i386 below!

SR_DEV=$(/usr/local/sbin/getdevpath -va59 -p100)

/usr/local/sbin/fxload-sr-xxx -I SRangerFx -D $SR_DEV

and table file (note: do not break the line at “\“ and do not put the “\“ in the line!).
/etc/hotplug/usb.usermap:

sranger_script 0x0003 0x0a59 0x0100 0x0001 0x0000 0x0000 \
0x00 0x00 0x00 0x00 0x00 0x00 0x00000000

If the file usb.usermap exists and contains any entries, just add this line shown above!

2.1.4 Troubleshooting

Just in case something did not work as expected, do not worry, figure out the trouble by checking
messages in your system log file. The kernel module places some messages and notifications

12

2.2 Module description

into the system log file (/var/log/messages). Before you start, make sure the kernel USB
subsystem is working. Then start with no module loaded and no sranger USB connection.5

1. monitor messages in a separate xterm via “tail -f /var/log/messages” to see what happens
at each step

2. load module “insmod usb-sranger.o” (there should be a message in messages)

3. connect SRanger via USB cable and power it on (order does not matter) (this should show
some messages also)

4. now try “loadusb -m” (in mem debug mode for testing)

See appendix A for sample messages.

2.2 Module description

The Linux Signal Ranger module source is in SRanger/modules/usb-sranger.c. SRanger
“IO-Control” definitions are defined in SRanger/modules/sranger ioctl.h.

The module provides basic access to the DSP board(s) via the standard UNIX device file sys-
tem mechanism. It supports up to 166 Signal Ranger devices plugged in at once (only limited by
“#define MAX DEVICES 16” in usb-sranger.c), starting with Minor 200 (set by “#define
USB SRANGER MINOR BASE 200” in usb-sranger.c).

The following standard file operations are implemented7:

open Open the device. Multiple openings are allowed and handled correctly in an multitasking
environment. Each requested operation is blocking the device for all other operations
(they are waiting), possibly requested by other tasks, until finished. This allows using the
memory debugger (loadusb -m) simultaneous to other DSP using tasks or even multiple
active file handles within on application to avoid frequent repositioning of the read/write
address or DSP memory space via lseek.

Definition:
static int sranger open (struct inode *inode, struct file *file)

Arguments:
file: Path to device (e.g. /dev/sranger0)

Return Value (type int):

5BTW: The Signal Ranger could be connected, but try this order first.
6Multiple board support not yet tested. – Please tell us if you can test it!
7Some arguments (like “struct inode *inode”) are not described, because they are only used internally and not of

interest from users point of view. Refer to a good Unix/Linux kernel documentation. All file operations are well
defined for Unix/Linux and only the SRanger specific meanings are described here.

13

2 The Signal Ranger USB Linux kernel module

int: file handle id, a negative return value indicates an error code.
Errors:

-ENODEV: Device not found, no free minor
-ENOMEM: Memory allocation error

Get Unix/Linux help about open: “man 2 open”,
Example:

gint sranger = open (“/dev/sranger0”, O RDWR);
if (sranger < 0) printf(“Error !”);

llseek This system call positions the start address and selects the DSP memory space via the
orig parameter for all following read and write operations on the given file handle and
selects the DSP memory space via the orig parameter.

Definition:
static loff t sranger llseek(struct file *file, loff t offset, int orig)

Arguments:
file: File handle
offset: address in DSP memory space
orig: select one of the DSP memoryspaces, defined as:

Defines:
SRANGER SEEK DATA SPACE: DSP data address space
SRANGER SEEK PROG SPACE: DSP program address space
SRANGER SEEK IO SPACE: DSP IO address space

Return Value (type loff t):
loff t: new address

Errors:
-ENODEV: Device not found or unplugged
-ENOLINK: Device link invalid
-EINVAL: Address (offset) invalid

The upper address limit (offset) is not checked, but is limited to 0xffff.��
Get Unix/Linux help about lseek: “man 2 lseek”,
Example:

lseek (sranger, 0x4000, SRANGER SEEK DATA SPACE);

14

2.2 Module description

read Read data from DSP memory, starting at the address and memory space set by llseek.
The read method uses the SR-kernel for data transfer, and therefore needs, the SR-kernel
running. HPI data transfer is only possible via the ioctl method.

Definition:
static ssize t sranger read (struct file *file, char *buffer, size t count, loff t *ppos)

Arguments:
file: File handle
buffer: Pointer to buffer to accept data
count: Number of bytes to transfer.

Return Value (type ssize t):
ssize t: read count, a negative return value indicates an error code.

Errors:
-ENODEV: Device not found or unplugged
-EFAULT: Error while copying data to user space

The size of the transfered block “count” is in bytes and not in words and must be even! ��

The maximum transfer block size is 0x8000 bytes ��
The user is responsible for correct endianess handling, especially on i386! On PPC sys- ��
tems the DSP and host are both big-endian.
Get Unix/Linux help about read: “man 2 read” ,
Example:

short data[10];
read (sranger, data, sizeof (data));

write Write data to DSP memory, starting at the address and memory space set by llseek. The
write method uses the SR-kernel for data transfer, and therefore needs, the SR-kernel
running. HPI data transfer is only possible via the ioctl method.

Definition:
static ssize t sranger write (struct file *file, const char *buffer, size t count, loff t *ppos)

Arguments:
file: File handle
buffer: Pointer to buffer to accept data
count: Number of bytes to transfer

Return Value (type ssize t):

15

2 The Signal Ranger USB Linux kernel module

ssize t: write count, a negative return value indicates an error code.
Errors:

-ENODEV: Device not found or unplugged
-EFAULT: Error while copying data to user space

The size of the transfered block “count” is in bytes and not in words and must be even!��

The maximum transfer block size is 0x8000 bytes��
The user is responsible for correct endianess handling, especially on i386! On PPC sys-��
tems the DSP and host are both big-endian.
Get Unix/Linux help about write: “man 2 write”,
Example:

short data[10];
write (sranger, data, sizeof (data));

ioctl System call used to perform special “IO-controls”. Usually not needed by user-applications.
It is used in “loadusb” to reset the DSP and to upload the DSP kernel via HPI or for mem-
ory debugging.

Definition:
static int sranger ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)

Arguments:
file: File handle
cmd: Command Id, see “SRANGER IOCTL . . . ” list below
arg: Value/Pointer for command.

Defines:
SRANGER IOCTL VENDOR: request USB vendor Id

Return value: Vendor Id
SRANGER IOCTL PRODUCT: request USB product Id

Return value: Product Id
SRANGER IOCTL ASSERT DSP RESET: activate DSP reset line
SRANGER IOCTL RELEASE DSP RESET: release DSP reset line
SRANGER IOCTL INTERRUPT DSP FROM HPI: interrupt DSP from HPI
SRANGER IOCTL W LEDS: set SRanger multi color LED

arg: LED color: 0: off, 1: red, 2: green, 3: orange
SRANGER IOCTL HPI MOVE OUTREQUEST: HPI data move out request,

host to DSP
arg: pointer to args struct:

16

2.2 Module description

struct{
unsigned short index; // word address
unsigned short length;// length in bytes, even!
void *buffer; // pointer to buffer

} args;
SRANGER IOCTL HPI MOVE INREQUEST: HPI data move in request,

DSP to host
arg: pointer to args struct:

struct{
unsigned short index; // word address
unsigned short length;// length in bytes, even!
void *buffer; // pointer to buffer

} args;
SRANGER IOCTL HPI CONTROL OUTREQUEST: HPI control out request

arg: pointer to args struct
SRANGER IOCTL HPI CONTROL INREQUEST: HPI control in request

arg: pointer to args struct
SRANGER IOCTL KERNEL EXEC: DSP kernel exec request

arg: kernel execute address
SRANGER IOCTL KERNEL TIMEOUT: set USB HPI timeout

Return Value (type int):
result of request, depending on command
NULL: OK, no error

Errors:
-ENODEV: Device not found or unplugged
-EIO: IO Error
-ENOTTY: did not understand this ioctl call

Get Unix/Linux help about ioctl: “man 2 ioctl” ,
Examples:

vendorid = ioctl(sranger, SRANGER IOCTL VENDOR, (unsigned long)&vendor);
ioctl(sranger, SRANGER IOCTL W LEDS, 1); // LED red
ioctl(sranger, SRANGER IOCTL W LEDS, 2); // LED green

More samples how to use iotcl, read, write and seek can be found in the source ,
code of SRanger/loadusb/loadusb.c. Especially look at the function “void
mini mem debugger()”.

17

2 The Signal Ranger USB Linux kernel module

All requests are similar to the original SRanger hardware documentation!,

release Close device.

Definition:
static int sranger release (struct inode *inode, struct file *file)

Arguments:
file: File handle

Get Unix/Linux help about close: “man 2 close”,
Example:

close (sranger);

18

3 Example user program

This example demonstrates how to move data in between the DSP and host PC. The “DSP
kernel data mode” is used. This will reduce the needed system calls to open, lseek, read, write
and close.

Actually the user is not limited to C, any language which includes the mentioned basic system
calls can be used. The second example is written in Python.

3.1 C program

This demo C program is part of the SRanger CVS module: SRanger/demos/demo1.c
Compile it manually using “gcc demo1.c -o demo1”. You should have run the autogen.sh

script before, because this generates the config.h. The only reason for including config.h
is the definition if WORDS BIGENDIAN. This is used to figure out if a correction of the byte
order is needed or not. The function “swapshort()” is used for that.

/*
* DSP tools for Linux -- demo program

*
* Compile with: "gcc demo1.c -o demo1"

*
* Copyright (C) 2003 Percy Zahl

*
* Authors: Percy Zahl <zahl@users.sf.net>

* WWW Home: http://sranger.sf.net

*
* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

19

3 Example user program

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "../config.h"

/*
* #include "../modules/sranger_ioctl.h"

*/

/* define yourself or include from ../modules/sranger_ioctl.h */
#define SRANGER_SEEK_DATA_SPACE 1
#define SRANGER_SEEK_PROG_SPACE 2
#define SRANGER_SEEK_IO_SPACE 3

/* Define to 1 if your processor stores words with the most significant byte
first (like Motorola and SPARC, unlike Intel and VAX). */

#ifndef WORDS_BIGENDIAN
define WORDS_BIGENDIAN 0
#endif

/* swap short */
void swapshort(short *addr)
{

unsigned short temp1,temp2;

temp1 = temp2 = *addr;

*addr = ((temp2 & 0xFF) << 8) | ((temp1 >> 8) & 0xFF);
}

/* open SRanger device and return file handle */
int open_sr (){

int sranger;
sranger = open ("/dev/sranger0", O_RDWR);
if (sranger < 0){

fprintf (stderr,
"Error: Cannot connect to sranger.\n"
"Please plugin SR / load module.\n");

exit(1);
}

20

3.1 C program

return sranger;
}

int main (int argc, char *argv[]){
int i, ret;
short data[20];
int sranger;

if (WORDS_BIGENDIAN)
printf ("Your host CPU is BIG ENDIAN (Motorola: PPC, Sparc).\n");

else
printf ("Your host CPU is LITTLE ENDIAN (Intel: i386, Vax).\n");

sranger = open_sr ();

/* set address to 0x1500, DSP data space */
ret = lseek (sranger, 0x1500, SRANGER_SEEK_DATA_SPACE);
printf ("lseek: 0x%04x\n", ret);

/* create some new data */
for (i=0; i<20; ++i)

data[i] = i*i;

if (!WORDS_BIGENDIAN)
for (i=0; i<20; ++i)

swapshort (&data[i]);

/* write data, 20 words */
ret = write (sranger, data, sizeof (data));
printf ("write: %d bytes\n", ret);

/* read data, 20 words -- still at address 0x1500 */
ret = read (sranger, data, sizeof (data));
printf ("read: %d bytes\n", ret);

if (!WORDS_BIGENDIAN)
for (i=0; i<20; ++i)

swapshort (&data[i]);

for (i=0; i<20; ++i)
printf ("data[%3d] = %6d\n", i, data[i]);

/* close sranger connection */
ret = close (sranger);
printf ("close: %d\n", ret);

21

3 Example user program

return 0;
}

22

3.2 Python program

3.2 Python program

The same program implemented in Python (tested with Python 2.1.3). This demo Python pro-
gram is part of the SRanger CVS module: SRanger/demos/demo1.py

Please note the different behavior of read and write here, the current seek position is moved with ��
the number of bytes read or written.

Endianess correction is performed automatically by Python, using the pack/unpack string func- ��
tions and the format “>h”. Please refer to the Python documentation.

#!/usr/bin/env python

* Python demo program
*
* Copyright (C) 2003 Percy Zahl
*
* Author: Percy Zahl <zahl@users.sf.net>
* WWW Home: http://sranger.sf.net
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

import struct
import array

SRANGER_SEEK_DATA_SPACE = 1
SRANGER_SEEK_PROG_SPACE = 2
SRANGER_SEEK_IO_SPACE = 3

def square(x): return x*x

def main():
print ("Demo1: Python talks with Signal Ranger")

23

http://http://www.python.org/doc/

3 Example user program

Data Format: short, automatic conversion system to BIG ENDIAN
fmt = ">hhhhhhhhhhhhhhhhhhhh"
device = "/dev/sranger0"

create data
data = map(square, range(0, 20))
print ("Created Data :", data)

open SRanger
sr = open (device, "wb")
sr.seek (0x1500, SRANGER_SEEK_DATA_SPACE)

print ("writing...")
convert data to bin and write
for value in data:

sr.write (struct.pack (">h", value))
sr.close ()

sr = open (device, "rb")
sr.seek (0x1500, SRANGER_SEEK_DATA_SPACE)

print ("reading...")
read data and unpack from bin format
dspdata = struct.unpack (fmt, sr.read (struct.calcsize (fmt)))
sr.close ()

print ("Data read from DSP:", dspdata)

print ("Byby.")

----- program start -----
main()

----- end of python program -----

24

Part II

Utilities

25

4 The Signal Ranger Linux DSP COFF
loader and memory debugger

4.1 Description

The program “loadusb” in SRanger/loadusb is the Linux version of the “Mini-Debugger”
which comes with the Signal Ranger. It did not offer a GUI but it works as command line utility
in a text terminal (xterm) based user interface to explore the DSP memory and allows some
additional actions like memory dumping to screen or file, memory read, write, move, test, set or
clear.

Refer to the end of this chapter for release notes for newer versions (SRanger/loadusb,
SRanger/loadusb64, SRanger/loadusb-mk2).

In addition it has a special fast refreshing “memory watch” mode, which can be customized
by editing some code.

Command line options, list this help via “loadusb –help”:

pzahl@charon:˜/SRanger/loadusb$./loadusb --help
COFF Loader/Terminal Emulator for Signal Ranger SP2/USB
Version 0.01 by P.Zahl
==
loadusb -[dqvVbclEsrmLth] file.out (COFF2)
default action: COFF2 load and exec at symbol address _c_int00
Device Options:
-d: path to device (default:/dev/sranger0)
COFF load/dump options:
-x: load only, no reset, no SRkernel, no exec
-b: clear_bss
-q: quite, -v: verbose, -V: more verbose
-c: Dump, -C C Dump (dump only, no load)
Debug/Testing Options:
-s: simulate only, no real load or reset
-r: reset DSP and load SRkernel, exit
-e address: Exec DSP prog at address, exit
-m: run SRanger memory debugger, no load
-L #no: Set SRanger LED (#no: off=0, red=1, green=2, orange=3)
-t: run terminal emulator/watch process after loading,

may be used with -s to avoid loading [no terminal, but watch mode]

27

4 The Signal Ranger Linux DSP COFF loader and memory debugger

-w watchfile: use watchfile [not yet available]
-h: this help, exit

4.2 Memory debugger mode

The memory debugger mode is entered via “loadusb -m”. Using this option no reset and not
loading is performed. This allows to debug any running DSP program, even in parallel using
multiple instances of the loadusb program itself!

4.2.1 Debugger command line interface

The loadusb “Mini SRanger Debugger mode” is a command line tool and accepts a small set
of single letter commands. The command ’h’ for help lists all. After successful debugger start
a prompt ’HPI:PROG:[1500]:0040 > ’ is presented. It is preceded by a four element vector,
separated by ’:’:

The first element, here ’HPI’, represents the current data transfer mode used. It can be
switched to the ’Kernel’ mode using the command “m:K” and back via “m:H’.

The second element, here ’PROG’, represents the current DSP memory space. It can be
switched in between ’PROG’ (Program memory space) via “s:p”, ’DATA’ (Data memory space)
via “s:d” and ’IO’ (IO space) via “s:i”.

The third element, here ’[1500]’, represents the current (word) address in hexadecimal no-
tation. It can be changed via “a,address”, address is interpreted as hexadecimal word address.
Enter “a,1000” to set the address to 0x1000.

The last element, here ’0040’, represents the current data buffer length (words) in hexadeci-
mal. Change the length via “l,100” for example.

To read DSP data just type “r”, this will start reading length words at the current address
from the DSP into the debuggers buffer. Type “d” to display the buffers content. The command
“w” will write the currently stored data of the debuggers buffer into the DSP memory. Note,
the buffer can be read at any valid address set by “a,address” and written later anywhere else
(moved!) by changing the address after the read command was issued!

The buffer can be cleared “c” or set to any value “c,13” or set to a repeating value range
“c,10,20”.

There are some more commands for you to figure out – ”a,1000,1100” –, enjoy!

The command syntax is not case sensitive, a ’,’ can be used instead of ’:’. “m,k” is,
equivalent to “m:K”!

The command “t” (memory test) is temporary destructive, so do not overwrite vital words!��
Here is a sample session:

28

4.2 Memory debugger mode

pzahl@charon:˜/SRanger/loadusb$./loadusb -m
COFF Loader/Terminal Emulator for Signal Ranger SP2/USB
Version 0.01 by P.Zahl
==
Product: 0x0a59
Product: 0x0103
--> B.Paillard, Signal Ranger SP2 -- OK.

--- Welcome to the Mini SRanger Debugger, enter ’h’ for help ---

HPI:PROG:[1500]:0040 > h

*** Mini SRanger Debugger Help ***

Syntax : mode:space:[address]:length > cmd[:arg1[:arg2]];
r : read length words into buffer from SR address
w : write length words from buffer to SR address
w,0xXXXX : write (hex) word to SR address
w,XXXX : write (dec) word to SR address
c[:XX[:YY]] : clear [set buffer to XX [...YY modulo]]
f:w:file : write buffer dump to file
f:r:file : read buffer dump from file
f:y:file : write words as data table [i y ys] to file
d : dump length words starting of buffer
a:XXXX[:YYYY] : address (hex) [range]
l:XXXX : length (hex)
m:[H|K] : mode H:HPI,K:Kernel
s:[P|D|I] : address spaces are Prog,Data,IO
b:adr : branch to address (Kernel Exec)
o:file : load COFF file
t : run memtest at address/length
0/1/2/3 : Set LED off/red/green/orange
x : reset SRanger and load SRkernel
q : quit

Avoid writing to if not for some special reason:
0x80...:vectors, 0x100-0x2ff:kernel, 0x1000-0x1022:mbox

HPI:PROG:[1500]:0040 > m,k
Kernel:PROG:[1500]:0040 > s,d
Kernel:DATA:[1500]:0040 > a,500
Kernel:DATA:[0500]:0040 > l,20
Kernel:DATA:[0500]:0020 > r
lseek: 500
read: 40
Kernel:DATA:[0500]:0020 > d
0500: 00 02 29 f8 03 15 4f f8 03 84 10 f8 03 0f f6 b9 ..)...O.........

29

4 The Signal Ranger Linux DSP COFF loader and memory debugger

0508: 00 f8 03 91 f0 30 07 ff 88 11 f4 95 f4 95 30 e10........0.
0510: 18 00 f7 b9 57 f8 03 84 29 f8 03 16 4f f8 03 84W...)...O...
0518: 10 f8 03 10 f6 b9 00 f8 03 91 f0 30 07 ff 88 110....
Kernel:DATA:[0500]:0020 > c
Clearing/setting/filling buffer...
Kernel:DATA:[0500]:0020 > d
0500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0508: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0510: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0518: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Kernel:DATA:[0500]:0020 > c,11
Clearing/setting/filling buffer...
Kernel:DATA:[0500]:0020 > d
0500: 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
0508: 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
0510: 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
0518: 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Kernel:DATA:[0500]:0020 > c,10,20
Clearing/setting/filling buffer...
Kernel:DATA:[0500]:0020 > d
0500: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0508: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0510: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0518: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Kernel:DATA:[0500]:0020 > r
lseek: 500
read: 40
Kernel:DATA:[0500]:0020 > d
0500: 00 02 29 f8 03 15 4f f8 03 84 10 f8 03 0f f6 b9 ..)...O.........
0508: 00 f8 03 91 f0 30 07 ff 88 11 f4 95 f4 95 30 e10........0.
0510: 18 00 f7 b9 57 f8 03 84 29 f8 03 16 4f f8 03 84W...)...O...
0518: 10 f8 03 10 f6 b9 00 f8 03 91 f0 30 07 ff 88 110....
Kernel:DATA:[0500]:0020 > c,10,20
Clearing/setting/filling buffer...
Kernel:DATA:[0500]:0020 > w
lseek: 500
write: 40
Kernel:DATA:[0500]:0020 > c
Clearing/setting/filling buffer...
Kernel:DATA:[0500]:0020 > d
0500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0508: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0510: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0518: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Kernel:DATA:[0500]:0020 > r
lseek: 500

30

4.3 Loading and starting a DSP program

read: 40
Kernel:DATA:[0500]:0020 > d
0500: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0508: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0510: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0518: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Kernel:DATA:[0500]:0020 > q
byby.

4.3 Loading and starting a DSP program

This is the main purpose and default action of the loadusb program. It issues a DSP reset, then
loads the DSP kernel and waits until the kernel is up and running (LED turns green). Then
the user program (the COFF2 executable with extension “.out”, specified at command line) is
downloaded section by section and verified at each step. Finally the address of the “C Entry-
point” symbol “ c int00” is looked up and a DSP-Kernel-Exec at this address is performed to
start the user DSP program.

The loadusb program needs a DSP kernel (kernel.out) file in the current working direc-
tory. This kernel – whatever it is – is loaded after reset.

This way a different than the default SRkernel.out can be downloaded first, i.e. the ,
Flash-boot kernel SRKernel FB.out can be copied/symlinked to the file with the name
kernel.out – this allows to reboot from Flash via “loadusb -r”.

Here is a sample session:

pzahl@charon:˜/SRanger/loadusb$./loadusb ../TiCC-project-files
/DolbyThx/Debug/FB_thx.out

COFF Loader/Terminal Emulator for Signal Ranger SP2/USB
Version 0.01 by P.Zahl
==
Product: 0x0a59
Product: 0x0103
--> B.Paillard, Signal Ranger SP2 -- OK.

Resetting Signal Ranger loading SRkernel
SRkernel is up and running - LED green
Downloading 00f0bytes
Downloading 0ff8bytes
Downloading 05dabytes
Downloading 0548bytes
Downloading 0144bytes
Downloading 0020bytes

31

4 The Signal Ranger Linux DSP COFF loader and memory debugger

C Entrypoint _c_int00: 0x0e8d
Kernel Exec at address 0x0e8d
Branch initiated.

4.4 Load, start and watch

Sample session:

pzahl@charon:˜/SRanger/loadusb$./loadusb -t ../TiCC-project-files
/FB_spmcontrol/Debug/FB_spmcontrol.out

COFF Loader/Terminal Emulator for Signal Ranger SP2/USB
Version 0.01 by P.Zahl

==
Product: 0x0a59
Product: 0x0103
--> B.Paillard, Signal Ranger SP2 -- OK.

Resetting Signal Ranger loading SRkernel
SRkernel is up and running - LED green
Downloading 00f0bytes
Downloading 0642bytes
Downloading 04f4bytes
Downloading 0470bytes
Downloading 0342bytes
Downloading 01a2bytes
Downloading 00a8bytes
Downloading 000ebytes
Downloading 07e2bytes
Downloading 048ebytes
Downloading 02bebytes
Downloading 0034bytes
C Entrypoint _c_int00: 0x26f0
Kernel Exec at address 0x26f0
Branch initiated.

---- sceenshot of quickly updating data view ----

Running Terminal Emulator in DSP Memory Watch Mode.

MagVerDatID: FFFFEE01 0015 2003 0513 1001
State.: 0000 0000 001F 001D 0000 04A3 0000 07D0 0000 0032 0000 012A 10C9
AIC-in: 1 3 2 4 2 -9 0 0

32

4.5 Release Notes

AIC-out: 0 0 0 0 0 32766 26212 0
AIC-regGn: 26624 18432 10240 2048 26624 18602 10240 2218 1

-1 0 2 2 -7
Fifo: 0 0 0 0 2048 1 1 2 3 4

PrbFifo: 0 0 0 0 2048 1 10 20 30 40
Feedback: 327 327 0 -6136 -17998 -11862 -32768 0 32767
Probe-S: 0 0 0 0

Probe-NIF: 0 0 0 0 0 0
Probe-DF: 262144 262144 262144 262144 262144 262144
Probe-NX: 0 0 1 0
Probe-AC: 0 0 0 0 0
Probe-ST: 0 0 0 0 0 0

SignalRanger TermEmu/Watch v1.1 (C) PZ * Thu May 15 13:51:40 2003

Have a look at the end of the loadusb.c source file to find out how to customize the data shown! ��

A Flash write/program option is not yet available. Are you a volunteer? ��

4.5 Release Notes

The original DSP code loader and mini memory debugger (loadusb) found in SRanger/loadusb��
works only on 32bit systems and got obsoleted by now. Use the newer loadusb64 version for all
32- and 64-bit systems.

In SRanger/loadusb64 the 64-bit compatible and upgraded version of the original loadusb ��
is located. Same binary name. You should now only use this version, as it work on all 32- and
64-bit systems.

In SRanger/loadusb-mk2) the next generation loader for the SignalRanger-MK2 only, 32- ��
and 64-bit host system compatible.

33

4 The Signal Ranger Linux DSP COFF loader and memory debugger

34

Part III

Appendix

35

A Example module messages

Here is a typical logfile /var/log/messages output:

[insmod usb-sranger.o]
usb.c: registered new driver sranger
usb-sranger.c: USB SignalRanger SP2 Driver v0.1

[attach/power on SRanger SP2 to USB bus]
hub.c: new USB device 10:19.0-1, assigned address 18
usb-sranger.c: sranger_probe - probing for B.Paillard Signal Ranger SP2 DSP card
usb-sranger.c: sranger_probe - USB SignalRanger SP2 device now attached to sranger0
usb-sranger.c: sranger_probe - USB Devive Information:
usb-sranger.c: sranger_probe - Vendor : 0xa59
usb-sranger.c: sranger_probe - Product: 0x103
usb-sranger.c: sranger_probe - Device Ver: 1.21

[disconnect/power off]
usb.c: USB disconnect on device 10:19.0-1 address 18
usb-sranger.c: USB SignalRanger #0 now disconnected

37

A Example module messages

38

B Signal Ranger and Gxsm

B.1 Startup

1. “pzahl@charon: /SRanger/loadusb$./loadusb -t ../TiCC-project-files/FB spmcontrol/Debug/FB spmcontrol.out”

2. start gxsm2

3. go to preference or through the first time druids and select the hardware “sranger-spm”
and set other settings as needed... (only first time)

4. restart gxsm2

39

B Signal Ranger and Gxsm

40

C Terms and conditions

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software–to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

41

C Terms and conditions

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The ”Program”, below, refers to any such program or work, and a ”work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and that users may redistribute

42

the program under these conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an offer,
in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control compi-
lation and installation of the executable. However, as a special exception, the source code dis-
tributed need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place counts
as distribution of the source code, even though third parties are not compelled to copy the source

43

C Terms and conditions

along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the
Program is void, and will automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipi-
ent automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of pro-
tecting the integrity of the free software distribution system, which is implemented by public
license practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to
the author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program under
this License may add an explicit geographical distribution limitation excluding those countries,

44

so that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and ”any later version”, you have the option of fol-
lowing the terms and conditions either of that version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of this License,
you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LI-
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

45

C Terms and conditions

46

About this project

All started as I heard first about the Signal Ranger DSP board on a Thursday, Nov. 8th – I
remember, because we, the Gxsm team, had an discussion about it and possible future DSP
solutions the next day at the AVS conference in Denver – via an E-mail from Alastair McLean,
who is interested into the Gxsm project:

“. . . There is a Canadian company (SoftdB) that sells a very inexpensive DSP board called
the Signal Ranger DSP Board. . . . ”

The trouble was getting a board, because there was no funding and no need for our recent
science projects for any upgrade, but finally I decided to buy a board for myself to find out
more about it – this was in December 2002. I used Christmas and new year holidays to develop
the Signal Ranger USB Linux module and succeeded, I appreciate the friendly help of Bruno
Paillard with several questions.

The SPM DSP software development started. . .
Golden, Colorado USA, February 2, 2003 Percy Zahl

47

About this project

. . . and started working end February and is almost complete today.
Negenborn, Germany, May 2003 Percy Zahl

48

D Comments and Questions

General comments and questions regarding this document should be sent by email to zahl@users.sourceforge.net.
If you find specific errors in this document, please report the bug at the SRanger Bug Tracker at
SourceForge.

Questions regarding how to use the information in this document should be sent to the appro-
priate SRanger help or discussion forum at SourceForge.

For any of these channels, please be sure not to send HTML email. Thanks.

49

	Front Matter
	Abstract

	Signal Ranger and Linux
	The Signal Ranger USB Linux kernel module
	Installation
	Quick-start -- Linux 2.4.x
	Quick-start -- Linux 2.6.x
	Signal Ranger-STD firmware loader setup
	Troubleshooting

	Module description

	Example user program
	C program
	Python program

	Utilities
	The Signal Ranger Linux DSP COFF loader and memory debugger
	Description
	Memory debugger mode
	Debugger command line interface

	Loading and starting a DSP program
	Load, start and watch
	Release Notes

	Appendix
	Example module messages
	Signal Ranger and Gxsm
	Startup

	Terms and conditions
	About this project
	Comments and Questions

